CORVUS EDUCATION

Formally adopted by the Governing Board/ Trust of:-	Corvus Education Trust
On:-	$26^{\text {th }}$ \& $28^{\text {th }}$ November 2018
Chair of Governors/Trustees:-	Clair De'ath \& Stuart Page Date for Review:-

Corvus Education Trust Calculation Policy

Aims

This Calculation Policy aims to ensure all pupils:

- see mathematics as both a written and spoken language
- are competent in fluency, reasoning and problem solving
- understand important mathematical concepts and make connections within mathematics
- are taught consistent calculation strategies in a methodical manner across the academy trust
- understand the progression of skills and key concepts for the four operations through a concrete, pictorial and abstract approach
- are able to add, subtract, multiply and divide efficiently

Overview

Within the Corvus Trust we believe that it is essential for children to move from a conceptual understanding to an abstract understanding of mathematics. This will enable children to develop a secure knowledge of mathematics and become confident in applying their mathematical skills. The calculation strategies we have outlined in this document are progressive and at each stage make links between concrete, pictorial and abstract recording before moving to more formal written methods.

Mental Skills

It is essential that pupils are provided with daily opportunities to develop their mental calculation skills. They need to be able to:

- recognise the size, place value and position of numbers
- count on and back in steps of different sizes from any number, including where they need to bridge through ten
- know number bonds
- partition and recombine numbers
- recognise doubles and halves
- quickly recall multiplication facts and derive associated division facts
- use known facts to generate related number facts

Representations

All schools use a variety of concrete, pictorial and abstract representations of numbers and calculations. Pupils should have an opportunity to manipulate and experience a variety of models, images, and resources to enable them to choose the most suitable representation for each calculation. In the picture below you can see some examples of models, images and resources: arrow cards, bead strings, counters, ten frames, dice, Base 10, digit cards, multilink, number fans, number lines, number tracks, Numicon, Cuisenaire, sorting objects etc.

Algebra

The development of algebra begins early on and should be a focus of early mathematical teaching. As soon as children are introduced to symbols, calculations
need to be presented in different ways. Children need to learn that, in maths, equality $(=)$ means two sets are balanced and inequality (\neq) means an imbalance.
They need to see number sentences as equations that can be represented in numerous ways e.g. $7+3=10$ could also be represented as $10=3+7$. They can also be represented as balanced equations e.g. $1+9=6+4$ or $7+3=12-2$. To deepen their understanding, children should have opportunities to experience some examples of inequality e.g. $9 \neq 6+2$.

Key Vocabulary

More, count on, increase, add, plus, addition, sum, total, altogether, equals, partition, recombine, commutative.

Progression of skills	Addition method
Count reliably up to 10 everyday objects	$1,2,3,4,5 \text {, }$ 6... there are 6 .
Understand the 'numberness' of a number (subitize)	HH II Estimate the number of objects by glancing at a set.
Recognise numbers 0 to 10	
Count on in ones, twos, fives and tens	
Find one more than a number.	

Begin to
relate
addition to
combining two
parts to make
a whole.

Count along a
number line to
add numbers
together
(within ten).

Begin to use
the + and $=$
signs to
record mental
calculations in
a number
sentence

Know that
addition can
be done in any
order
(commutative
law)

Count on from
the biggest
number.
megrouping to

Begin to partition numbers in order to add.	
Know which digit changes when adding ones or tens to any number	
Partitioning and recombining	$15+13$ $10+5+10+3=20+8=28$
Partitioning and recombining (counting on from the biggest number)	$\begin{aligned} & 15+13 \\ & 15+10=25 \\ & 25+3=28 \end{aligned}$

Addition on a blank number line using more efficient strategies.	
Expanded method	It is important that the children have a good understanding of place value and partitioning using concrete resources and visual images to support calculations. The expanded method enables children to see what happens to numbers in the standard written method.
Standard written method	The previous stages reinforce what happens to the numbers when they are added together using more formal methods. $\begin{array}{r} 48 \\ +36 \\ \hline 84 \end{array}$

To add successfully, children need to be able to:

- recall all addition pairs to $9+9$ and number bonds
- add mentally a series of one-digit numbers, such as $5+8+4$
- add multiples of $10,100,1000$ and beyond using related addition facts and their knowledge of place value e.g. $6+7,60+70,600+700$ and so on.
- Partition numbers in different ways

Key Vocabulary
less, fewer, count back, decrease, take away, minus, subtraction, difference, left, equals, partition, inverse.

Progression of skills	Subtraction method
Begin to count backwards in familiar contexts such as number rhymes and stories	
Continue the count back in ones from any given number	$10,9,8,7 \ldots$
Begin to relate subtraction to 'taking away'	
Find one less than a number	
Count back in multiples of ten and in tens from any given number	

Count backwards along a number line to take away	If I take away four shells there are six left	
Recognise that subtraction is the inverse of addition and vice versa.	$5+3=8$ $8-3=5$	$8-5=3$
Begin to use the - and + signs to record mental calculations in a number sentence		
Begin to partition numbers il order to take away	$\begin{aligned} & 43-20>7 \\ & 43-20=23 \\ & 23-7=16 \end{aligned}$	
Begin to find the difference by counting up	00000000000000 The difference between II and 14 is 3 $14-11=3$ $11+$ $11+14$	

To subtract successfully, children need to be able to:

- recall addition and subtraction facts to 20
- subtract mentally a series of one-digit numbers, such as 17-3-4
- subtract multiples of $10,100,1000$ and beyond using related subtraction facts and their knowledge of place value e.g. 8-5, 80-50, 800-500 and so on
- Partition numbers in different ways

Progression în Teaching Multiplication

Key Vocabulary

Repeated addition, groups, array, multiply, multiplication, product, total, altogether, equals, partition, commutative, distributive.

Progression of skills	Multiplication method
Count in tens from zero	
Count in twos from zero	
Count in fives from zero	
Understand multiplication as repeated addition	$2+2+2+2$ 4 groups of 2 $2+2+2+2=8$ 2 multiplied by 4 $2 \times 4=8$
Use a number line to represent repeated addition	

Use arrays to illustrate commutativity	部数 $\begin{array}{cc} 2 \times 400^{2 \times 4=8} & 4 \times 2 \\ 00 & 0000^{4 \times 2=8} \\ 00 & 0000 \\ 00 & 2 \times 4=8 \end{array}$
Know multiplication facts to $12 x$ 12	
Use factors to multiply (distributive law)	Understand that ... $\begin{aligned} & 24 \times 20=24 \times 2 \times 10 \\ & 24 \times 50=24 \times 5 \times 10 \end{aligned}$
Use partitioning to support the multiplication of $\mathrm{O} \times$ TO alongside the grid method	13×4

To multiply successfully, children need to be able to:

- recall all multiplication facts to 12×12
- partition numbers in different ways, not just multiples of hundreds, tens and ones
- have a secure knowledge of place value and addition
- work out products e.g. $70 \times 5,70 \times 50,700 \times 5$ using the related fact 7×5.

Key Vocabulary

Repeated subtraction, groups, share, array, divide, division, equals, partition, fraction, inverse, remainder, factor, numerator, denominator

Progression of skills	Division method
Count back in tens	
Count back in twos	
Count back in fives	
Understand division as sharing	$15 \div 5=3$ 15 shared between 5 000000000000000
Understand division as grouping	
Understand division as repeated subtraction	$15-3-3-3-3-3=0$

Reinforce division as grouping through the use of arrays	
Use known multiplication facts to work out correspondin 9 division facts	$\text { If } 2 \times 10=20$ then $\begin{aligned} & 20 \div 10=2 \\ & 20 \div 2=10 \end{aligned}$
Represent division on a number line	$24 \div 4=6$
Understand the concept of having remainders	$13 \div 4=3$ remainder 1 $20 \div 9=2$ remainder 2
Chunking method	
Standard written method (short division)	$3 \longdiv { 2 7 }$ - use this method for larger numbers $\mathrm{HTU} \div \mathrm{U}$, ThHTU $\div U$ - use this method to divide numbers with up to 2 decimal places. - solve division problems involving measures and money. - use as the inverse operation to check multiplication calculations.

To divide successfully, children need to be able to:

- understand division as repeated subtraction
- estimate how many times one number divides into another
- multiply numbers mentally up to 12×12 and know some related multiplaction facts.
- have a secure knowledge of place value and subtraction

Conclusion

Although these strategies are progressive, children should not be encourage to stick to one prescribed strategy. They should be encouraged to reflect upon which method or strategy they find most reliable and suits their style of learning. It is important that children are allowed to record their working out and this should be encouraged from an early age.

